Warm-started wavefront reconstruction for adaptive optics.
نویسندگان
چکیده
Future extreme adaptive optics (ExAO) systems have been suggested with up to 10(5) sensors and actuators. We analyze the computational speed of iterative reconstruction algorithms for such large systems. We compare a total of 15 different scalable methods, including multigrid, preconditioned conjugate-gradient, and several new variants of these. Simulations on a 128x128 square sensor/actuator geometry using Taylor frozen-flow dynamics are carried out using both open-loop and closed-loop measurements, and algorithms are compared on a basis of the mean squared error and floating-point multiplications required. We also investigate the use of warm starting, where the most recent estimate is used to initialize the iterative scheme. In open-loop estimation or pseudo-open-loop control, warm starting provides a significant computational speedup; almost every algorithm tested converges in one iteration. In a standard closed-loop implementation, using a single iteration per time step, most algorithms give the minimum error even in cold start, and every algorithm gives the minimum error if warm started. The best algorithm is therefore the one with the smallest computational cost per iteration, not necessarily the one with the best quasi-static performance.
منابع مشابه
Dual-thread parallel control strategy for ophthalmic adaptive optics.
To improve ophthalmic adaptive optics speed and compensate for ocular wavefront aberration of high temporal frequency, the adaptive optics wavefront correction has been implemented with a control scheme including 2 parallel threads; one is dedicated to wavefront detection and the other conducts wavefront reconstruction and compensation. With a custom Shack-Hartmann wavefront sensor that measure...
متن کاملStudy of a MEMS-based Shack-Hartmann wavefront sensor with adjustable pupil sampling for astronomical adaptive optics.
We introduce a Shack-Hartmann wavefront sensor for adaptive optics that enables dynamic control of the spatial sampling of an incoming wavefront using a segmented mirror microelectrical mechanical systems (MEMS) device. Unlike a conventional lenslet array, subapertures are defined by either segments or groups of segments of a mirror array, with the ability to change spatial pupil sampling arbit...
متن کاملCentroid Detection by Gaussian Pattern Matching in Adaptive Optics
Shack Hartmann wavefront sensor is a two dimensional array of lenslets which is used to detect the incoming phase distorted wavefront through local tilt measurements made by recording the spot pattern near the focal plane. Wavefront reconstruction is performed in two stages (a) image centroiding to calculate local slopes, (b) formation of the wavefront shape from local slope measurement. Centro...
متن کاملCompressive Sampling in Intensity Based Control for Adaptive Optics
The central problem in Adaptive Optics feedback control is the reconstruction of the aberrated wavefront from wavefront sensor measurements. We recently presented a novel algorithm to compute the wavefront estimate directly from (Shack-)Hartmann intensity images instead of using the classical centroid algorithm to approximate the local wavefront slopes. The novel algorithm allows a distributed ...
متن کاملPrinciples of Wavefront Sensing and Reconstruction
A variety of approaches to wavefront sensing and reconstruction are surveyed as they are used in adaptive optics and related applications. These include the Gerchberg-Saxton algorithm; shearing interferometry; and Shack-Hartmann, curvature, and pyramid wavefront sensing. Emphasis is placed on the relevant optics and mathematics, which are developed in some detail for Shack-Hartmann and curvatur...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of the Optical Society of America. A, Optics, image science, and vision
دوره 25 5 شماره
صفحات -
تاریخ انتشار 2008